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I. SOLUTION OF MAXWELL’S EQUATIONS FOR SYMMETRIC SYSTEMS

Solving Maxwell’s differential equations corresponds to solving a system of coupled dif-

ferential equations to determine two unknown vector functions of four variables. This is no

easy task in the general case. Fortunately, as with most problems in physics, the existence of

symmetries in the system of interest, in the geometry and distribution of charge and current

in space, simplifies the solution.

A. Symmetries, coordinate systems, and differential equations

The first thing that you do when faced with a problem in electromagnetism is to look

carefully at the system and ask yourself: does this system have some kind of symmetry? If

the system remains exactly the same under some transformation, such as a translation in

space or time, a rotation about a given axis or point, etc, then the electric and magnetic fields

should also remain the same under this transformation: they must reflect the symmetry of

the system that they describe. You can be assured that this property of the fields, dictated

by the physics, is also reflected by the mathematical solution of Maxwell’s equations. This

solution for appropriate boundary conditions is unique. Therefore, if you guess one solution

using your physical intuition and the symmetry properties, then you know that this is the

one and only solution. In the case of symmetry, you can make an assumption about the r–

dependence of the unknown electric and magnetic fields, which reflects the fact that the fields

remain the same under the symmetry transformation, and solve the equations+boundary

conditions to verify that your assumption is correct.

In symmetric systems, it is advantageous to solve Maxwell’s equations using the coor-

dinate system related to the particular symmetry. For example, in the case of spherical

symmetry around point O, the fields only depend on the distance r from O, not on any

angles. It is thus advantageous to work with spherical coordinates, r = (r, θ, φ), with origin
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at O. Due to spherical symmetry, the dependence of the unknown field functions on three

variables x, y, z reduces to a dependence on one variable r =
√

x2 + y2 + z2. You can safely

assume the functional form

E(x, y, z, t) = E(r, t) , B(x, y, z, t) = B(r, t),

analyze the fields in the spherical coordinate system, E(r) = (Er(r), Eθ(r), Eφ(r)) and

B(r) = (Br(r), Bθ(r), Bφ(r)), substitute this ansatz in Maxwell’s differential equations,

and use the mathematical relations in the cover of Griffiths to express the derivatives ∇

in spherical coordinates. Noting that

∂E

∂φ
=

∂E

∂θ
=

∂B

∂φ
=

∂B

∂θ
B = 0,

we thus obtain that

∇ · E(r) =
1

r2

∂

∂r
[r2Er(r)] +

1

r
cot θEθ(r)

and

∇× E(r) =
cot θ

r
Eφ(r)r̂ −

1

r

∂

∂r
[rEφ(r)]θ̂ +

1

r

∂

∂r
[rEθ(r)]φ̂

and similar for the magnetic field. Similarly, in the case of cylindrical symmetry around a

line, usually taken as the axis z, the fields only depend on the distance r perpendicular to this

line. It is then advantageous to express Maxwell’s equations in the cylindrical coordinate

system and calculate the derivatives ∇ after noting that

∂E

∂φ
=

∂E

∂z
=

∂B

∂φ
=

∂B

∂z
= 0.

We thus obtain from the expressions of the vector derivatives in the cylndrical coordinate

system found in the cover of Griffith’s book that

∇ · E(r) =
1

r

∂

∂r
[rEr(r)]

and

∇×E(r) = −
∂Ez(r)

∂r
φ̂ +

1

r

∂

∂r
[rEφ(r)]ẑ

and similar for the magnetic field. The above expressions reduce Maxwell’s equations from

partial to ordinary differential equations. Note that some systems may remain invariant

only under rotation around the axis z but not when translated along the z–axis. In this

case, we can make the assumption that

E(r) = E(r, z) , B(r) = B(r, z)
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and obtain partial differential equations with two variables insetad of three. In the case of a

system that remains the same under any translational within the x–y plane, the fields only

depend on z:

E(r) = E(z) , B(r) = B(z).

If furthermore the system is invariant under reflection about a symmetry x–y plane, then

the fields also reflect this:

Ez(z) = −Ez(−z) , Bz(z) = −Bz(−z).

An important simplification arises if the geometry and charge and current distributions

do not change with time. This does not mean that charge does not move, it means that the

resulting current remains the same at all times. In this case,

∂

∂t
E =

∂

∂t
B = 0.

The electric and magnetic fields decouple in Maxwell’s equations, which can be solved inde-

pendently of each other: solve two equations to obtain the electric field,

∇× E = 0 , ∇ · E =
ρ

ǫ0

then solve two equations

∇ · B = 0 , ∇×B = µ0J

to get the magnetic field. Note that, in the absence of any charge distributions (e.g. neutral

conductors), the assumption E=0 satisfies the differential equations and the boundary con-

ditions and is therefore the unique solution. Stationary currents do not create electric fields,

only magnetic fields. This is not the case however for time–dependent currents, where the

electric and magnetic fields couple in Maxwell’s equations. Similarly, in the absence of any

currents, B=0 satisfies the differential equations and boundary conditions and is therefore

the unique solution. Time–independent charge distributions do not produce magnetic fields,

unlike for time–dependent distributions.

B. Boundary Conditions

Maxwell’s differential equations do not have a unique solution unless we also consider

appropriate boundary conditions. The latter correspond to making sure that the behavior
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of the solution at infinity and special points such as r=0 is physical. For example, at r=0

we make sure that the fields do not diverge unless there is a point or line charge or line

current there, in which case the solutions of Maxwell’s equations for r →0 should recover

the known fields of these charges or currents. Furthermore, when we view the system from

infinity, it often looks like a point or a surface since the viewing distance is much larger

than the characteristic dimensions. In this limit, the solution of Maxwell’s equations should

again recover the result expected for zero characteristic dimensions of the charge and current

distributions.

In addition, when we have charge or current restricted within a surface, we approximate

the rapid variation of the fields inside the small surface depth, which we consider as approxi-

mately zero, by a discontinuity in the fields. These discontinuities are derived from Maxwell’s

equations in Griffiths Vol 1, pages 115-117 (electric field) and pages 305-307 (magnetic field).

In particular, when a surface with surface charge σ at a given point separates two regions of

space, which we call 1 and 2, then the electric field components parallel to the surface are

continuous while the electric field components perpendicular to the surface are discontinuous

across the surface. The opposite holds for the magnetic field components. To describe the

discontinuity, which results if we approximate the volume charge or current density by a

surface density and neglect the surface depth, we define the unit vector n perpendicular to

the surface at the given point and pointing from region 1 towards region 2. We then obtain

for every point on the surface the following relations between the electric fields E1 and E2

right below and right above the surface, in regions 1 and 2 respectively:

E2 · n̂− E1 · n̂ =
σ

ǫ0

(1)

and

E2‖ = E1‖ (2)

where E‖ denote the projection of the electric field on the surface at the given point. More

compactly,

E2 −E1 =
σ

ǫ0

n̂ (3)

Similarly, Maxwell’s equations give for the magnetic field components right below and right

above the surface

B2 · n̂ = B1 · n̂ (4)
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and

B2 − B1 = µ0(K× n̂) (5)

where K is the surface current at the given point. As we shall see later, in some cases we

may use the above boundary conditions to claculate the surface charge or current densitites.

C. Integral Maxwell Equations

If you have a symmetric system, then you may find it simpler to solve the integral ver-

sion of Maxwell’s equations, obtained by taking the integral of both sides of the differential

equations and using mathematical properties. The simplification comes from the fact that

the electric and magnetic fields in symmetric systems remain constant on specific surfaces

or lines that depend on the symmetry. If this is the case, the integral version of Maxwell’s

equations become algebraic equations, since the fields can be factored out of integrals cal-

culated over such symmetry surfaces or lines. Read page 95 in Griffiths Vol 1. Maxwell’s

integral equations can be applied for any surfaces, volumes, and closed loops that we wish.

However, they are useful only if we choose them in a smart way.

1. Gauss’s Integral Law

∫

S

E · dS =
Qin

ǫ0

=
1

ǫ0

∫

V

ρdV + · · · (6)

In the above equation, the integral of the electric field on the left hand side is calculated

over any closed surface S that we choose (surface integral). In practice, we choose the

surface S dictated by the symmetry of the physical system, so that we can factor out of the

integral the electric field component along the direction of dS out of the integral (see worked

examples). For example, in the case of spherical or cylindrical symmetry, we can use the

above equation to calculate Er(r) if we choose S to be a sphere or cylinder respectively. Note

that the right hand side must count all charges enclosed by the above surface, due to ρ, σ,

λ, point charges, everything. Charge is calculated in terms of charge densities as discussed

in the previous section. The volume integral of ρ is calculated over the entire volume V

enclosed by the surface S. The vector dS has direction perpendicular to the surface and

points outward. Its magnitude is equal to the elementary area dS ( we split the surface into
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small parts of area dS and sum over them). More mathematical details about such surface

integrals may be found in pages 42-46 of Griffith’s book.

2. Faraday’s Integral Law

∫

C

E · dl = −
d

dt

∫

S

B · dS

The left hand side integral is calculated over a closed loop, which we split into infinitesimal

segments of length dl and then sum the dot product E · dl over all of them. The vector dl is

tangential to the closed line of interest. We can transverse this closed line by following any

one of the two possible directions; dl points along the direction of choice. The two opposite

directions give opposite signs of the above line integral. However, once we have chosen the

direction of dl, the direction of dS that appears in the integral on the right hand side is

fixed by the right hand rule, discussed by Griffiths on page 48. The right hand side integral

is calculated over any open surface, with any possible shape, bounded by the closed line

that we chose when calculating the integral on the left hand side. Unlike in Gauss’ law,

here the surface integral is calculated over an open surface. All the mathematical details are

discussed in pages 47-53 of Griffiths. Note that Gauss’s law for the magnetic field discussed

next implies that any surface that we choose to calculate the surface integral on the right

hand side will produce the same result, provided only that it is bounded by the closed loop

used on the left hand side.

In the case of a time–independent system, we obtain from the above equation that

∫

C

E · dl = 0

for any closed loop. This is easy to solve in the case of spherical symmetry if we take the

loop C to be the φ=constant, r=constant (Cθ) or the θ=constant, r=constant (Cφ) circle.

In this case,
∫

Cφ

E(r) · dl = Eφ(r)LCφ
= 0

where LCφ
is the length of the circle, which immediately gives that

Eφ = 0,
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while similarly
∫

Cθ

E(r) · dl = Eθ(r)LCθ
= 0

which immediately gives that

Eθ = 0.

We thus conclude that, in a time–independent spherically symmetric system,

E(r) = Er(r)r̂,

where Er(r) can be obtained either from Eq.(6) or by solving the differential equation plus

the boundary conditions discussed below.

In the case of cylindrical coordinates, we obtain using the same loop as above that Eφ = 0.

We also obtain that Ez = 0 from ∇× E=0, which after substituting the expressions found

in Griffiths and noting that E only depends on r gives Ez=constant (the same result can be

obtained from the integral equation), while for r → ∞ Ez=0.

3. Gauss’s Integral Law for the Magnetic field

∫

S

B · dS = 0

This applies for any closed surface that we choose. In the case of spherical or cylindrical

symmetry, by applying the above equation for S taken as a sphere or cylinder respectively,

the above equation gives Br=0.

4. Ampere–Maxwell Integral Law

∫

C

B · dl = µ0I + ǫ0µ0

d

dt

∫

S

E · dS

where

I =

∫

S

J · dS + · · ·

includes all currents that flow through the loop C, due to J, K, I, etc. Similar to Faraday’s

law, the line integral on the left hand side can be calculated over any closed loop that

we choose, while the surface integral on the right hand side is calculated over any open
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surface bounded by this closed loop, with the same conventions about positive and negative

directions.

D. Superposition

What happens if the system is not symmetric? Ask: can I break down the full prob-

lem into a superposition of symmetric problems? What this means is, can I express the

nonsymmetric charge and current distributions as a sum of symmetric distributions, solve

each symmetric problem separately, and then add the fields obtained this way to get the

full solution? This is the case since Maxwell’s equations are linear, i.e. only involve the

first power of the unknown fields. The simplest symmetric system involves a point charge,

and you can always separate a continuous charge or current distribution into infinitesimal

charges within infinitesimal volumes (see Griffiths Vol 1 pages 83-87), but you may be able

to do better.


